Polynomial Algorithms for the Linear Feasibility Problem
نویسنده
چکیده
We consider the homogenized linear feasibility problem, to find an x on the unit sphere, satisfying n linear inequalities ai x ≥ 0. To solve this problem we consider the centers of the insphere of spherical simplices, whose facets are determined by a subset of the constraints. As a result we find a new combinatorial algorithm for the linear feasibility problem. If we allow rescaling this algorithm becomes polynomial. We point out that the algorithm solves as well the more general convex feasibility problem. Moreover numerical experiments show that the algorithm could be of practical interest.
منابع مشابه
An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملAn improved infeasible interior-point method for symmetric cone linear complementarity problem
We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...
متن کاملA Mathematical Optimization Model for Solving Minimum Ordering Problem with Constraint Analysis and some Generalizations
In this paper, a mathematical method is proposed to formulate a generalized ordering problem. This model is formed as a linear optimization model in which some variables are binary. The constraints of the problem have been analyzed with the emphasis on the assessment of their importance in the formulation. On the one hand, these constraints enforce conditions on an arbitrary subgraph and then g...
متن کاملA New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization
We present a new full Nesterov and Todd step infeasible interior-point algorithm for semi-definite optimization. The algorithm decreases the duality gap and the feasibility residuals at the same rate. In the algorithm, we construct strictly feasible iterates for a sequence of perturbations of the given problem and its dual problem. Every main iteration of the algorithm consists of a feasibili...
متن کاملLinear programming on SS-fuzzy inequality constrained problems
In this paper, a linear optimization problem is investigated whose constraints are defined with fuzzy relational inequality. These constraints are formed as the intersection of two inequality fuzzy systems and Schweizer-Sklar family of t-norms. Schweizer-Sklar family of t-norms is a parametric family of continuous t-norms, which covers the whole spectrum of t-norms when the parameter is changed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007